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SUMMARY 

Tests were performed over an angle-of -attack range from 0' t o  33' and a t  a 
Reynolds number based on maximum body diameter of 1.85~10~. The flow over the  
forebody changed from axisymmetric t o  nonaxisymmetric with increasing angle of 
a t tack,  bu t  the  normalized hea t - t ransfer  d i s t r ibu t ion  along the v e r t i c a l  plane of 
symmetry was  predicted adequately from measured pressure d i s t r i b u t i o n s  by axisym- 
metric theory. The maximum heat  t r a n s f e r  a t  angle of a t t a c k  d id  not  occur a t  the  
s tagnat ion poin t  bu t  on the s m a l l  corner radius of the windward surface.  

A study of the  pressure and heat ing-rate  d is t r ibu t ions  on the  forebody 
suggested t h a t  enthalpy l e v e l  does not  change the heating-rate d i s t r i b u t i o n  s i g -  
n i f i c a n t l y .  A comparison of a i r  and helium data tended t o  v e r i f y  t h i s  conclusion. 

INTRODUCTION 

An important p a r t  of the p r o j e c t  Apollo capsule i s  the heat  s h i e l d  f o r  
reentry i n t o  the e a r t h ' s  atmosphere. To provide adequate thermal protect ion with 
a minimum of weight it i s  necessary t o  know the heating r a t e s  with reasonable 
accuracy. Therefore the  parameters which a f f e c t  the heating ra tes ,  such as pres-  
sure d i s t r i b u t i o n ,  veloci ty  gradients,  Mach number, e tc . ,  have been invest igated 
*in a number of t es t  f a c i l i t i e s .  (1) t o  
describe measurements obtained i n  helium a t  
d is t r ibu t ions ,  ve loc i ty  gradients,  and heating r a t e s  and t o  compare these data  
Nith e x i s t i n g  theories;  ( 3 )  t o  evaluate the e f fec ts  of differences i n  gas compo- 
s i t i o n  and proper t ies  upon the heating rates and heating-rate predict ions.  

The purpose of the present  repor t  i s :  
M, = 20; ( 2 )  t o  cor re la te  pressure 
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s p e c i f i c  heat  a t  constant pressure 

9 coef f ic ien t  of heat  t ransfer ,  
T r  - Tw . 

r a t i o  of l o c a l  heat- t ransfer  coef f ic ien t  t o  t h e  stagnation-point hea t -  
t r a n s f e r  coef f ic ien t  a t  zero angle of a t tack  

* 
f l u i d  enthalpy, cpT 

axial distance along the nozzle center  l i n e  measured from t h e  begin- 
ning of the t e s t  sect ion and i n  the  d i rec t ion  of the  f r e e  stream 

normal distance from the nozzle center  l i n e  

f r e e  -stream Mach number 

pres  sure  

r a t i o  of l o c a l  surface pressure t o  impact pressure a t  the  free-stream 
Mach number 

hea t - t ransfer  r a t e  normal t o  the body surface per  u n i t  a rea  

one-half the maximum body diameter 

spher ica l  forebody radius 

normal distance from a l i n e  passing through t h e  stagnation poin t  and 
i n  the d i rec t ion  of the  f r e e  stream t o  a poin t  on the body surface 

&% free-stream Reynolds number per  inch, - 
II, 

distance along the body surface measured from the stagnation poin t  
with the  body a t  zero angle of a t t a c k  

temp era t u r e  

free-stream ve loc i ty  

l o c a l  ve loc i ty  i n  s d i rec t ion  

l o c a l  ve loc i ty  along 

dis tance along the body surface i n  

cp' = 90' meridian 

cp = 0' d i r e c t i o n  measured from the  
t r u e  stagnation point  with the body a t  angle of a t t a c k  

coordinates defined i n  f i g u r e  1 
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a 

dis tance  along body surface i n  the  
the  t r u e  s tagnat ion poin t  with the body a t  angle of a t t ack  

cp'  = 90' d i rec t ion  measured from 

angle of a t t ack  measured from the  axis of symmetry and t h e  free-stream 
vector  

i sen t ropic  exponent 

f l u i d  dens i ty  

azimu-t'n angle as deiiried i r i  figure i 

azimuth angle as defined i n  f igu re  8 

normalized enthalpy gradient  a t  t h e  w a l l  

power i n  v i scos i ty  power l a w  

Subscripts 

0 s tagnat ion poin t  value 

r evaluated a t  recovery temperature 

t t o t a l  conditions ( i . e . ,  conditions t h a t  would e x i s t  i f  t he  gas were 
brought t o  r e s t  i s en t rop ica l ly )  

W evaluated a t  the  wal l  

2 conditions behind a normal shock wave 

APPARATUS 

Models 

The model configuration i s  shown i n  f igure 1. For L e  pressure t e s t s ,  t i e  

The s i z e  of t he  model 
model w a s  b ra s s  with a removable f r o n t  face which w a s  ro t a t ed  s o  t h a t  data  could 
be obtained a t  t h e  various meridian plane angles ( c p ) .  
l imi ted  t h e  number of pressure o r i f i c e s  t h a t  could be used during a s ing le  run. 
For the  t r a n s i e n t  hea t - t ransfer  tests, t he  model w a s  1/32-inch-thick s t a i n l e s s  
s t e e l  (SS347) with thermocouples spot  welded t o  t he  inner surface.  

3 
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A l l  t e s t s  were conducted a t  Iv&, = 20 and Reoo/inch = 0.744~10~ i n  the  Ames 

M, = 20 nozzle a t  severa l  locat ions i n  the  tes t  
hypersonic helium tunnel described i n  reference 1. 
of a Mach number survey of the 
sect ion.  
model angle of a t t a c k  varied from 0' t o  33'. 

Figure 2 presents  the  r e s u l t s  

L = 12 and 21  as t h e  The locat ion of the t e s t  model var ied between 

Instrumentation u 

All data  were recorded on magnetic tape by a Beckman Model 210 high-speed 
r e  c o r  ding s ys t em. 

Pressures were measured with bonded strain-gage pressure transducers with a 
range from 0 t o  10 ps ia .  
+O. 50 percent of f u l l - s c a l e  reading. 

These transducers were subjec t  t o  possible  e r r o r s  of 

Temperatures were measured with chromel-constantan thermocouples spot welded 
t o  the  inner surface of the thin-shel led hea t - t ransfer  model. 
recorded every 0.10 second with 21' F precis ion.  

Temperatures were 

TEST METHOD 

Flow Visualization 

Shock-wave shapes were measured from shadowgraphs of the  model taken over 
To obtain streamline the range of angles of a t t a c k  during the  pressure tests. 

pa t te rns  over t h e  spher ica l  face,  the forebody was coated with a mixture of vac- 
uum pump o i l ,  o l e i c  acid,  and Ti02. The model w a s  then t e s t e d  a t  the  desired 
angle of a t tack  and the streamline pa t te rns  were photographed a f t e r  t h e  tunnel  
w a s  shut down. 
s t a r t i n g  spike (see ref.  1 f o r  d e t a i l s )  w a s  placed ahead of the  model. 

To pro tec t  the flow pa t te rns  during tunnel shutdown, a flow 

. 
Pressure Tests 

The pressure transducers were ca l ibra ted  before each tes t  run. The tunnel  *. 

was s t a r t e d  with the model a t  a = 0'. A f t e r  supersonic flow was es tabl ished,  
the model w a s  posit ioned t o  the  desired angle of a t t a c k  and kept there  u n t i l  a 
constant pressure w a s  recorded. A t  t h a t  time t h e  t e s t  run w a s  terminated. 

A l l  the pressure data  were reduced t o  t h e  r a t i o  p/pt2. A t  some angle-of- 
a t t a c k  posit ions a curve f a i r e d  through the  da ta  d id  not pass through a value of 
P/Pt, = 1. The var ia t ion  of t h i s  r a t i o  from u n i t y  w a s  on the  order of 2 percent  
or l e s s  and was believed t o  be due t o  s m a l l  changes i n  the  measured p t 2  f o r  

4 



d i f f e ren t  t e s t  runs. Therefore, t he  value of p t p  w a s  adjusted so t h a t  a b e s t -  
f i t  curve t o  t h e  da ta  would pass through 
point .  

p/pt, = 1 a t  t h e  estimated s tagnat ion 

Heat -Transf e r  Tests 

Heat -transf e r  da ta  were obtained by the  t r ans i en t  temperature technique 
described i n  reference 2. 
mated and found t o  be negl ig ib le  except a t  the  model corners where accurate  e s t i -  
mates of conduction could not  be obtained. Therefore a l l  t he  da ta  a r e  presented 
without conduction correct ions.  The hea t - t ransfer  coe f f i c i en t  w a s  obtained from 
experimental da ta  by use of t h e  following equation taken from reference 2: 

Errors due t o  neglecting sk in  conduction were e s t i -  

Heating-rate da ta  obtained a t  i n i t i a l  w a l l  temperatures of -200' F, -100' F, and 
150' F were p l o t t e d  i n  the  form given by equation (1). 
c i e n t  and recovery temperature were obtained from such p l o t s  ( see  ref.  2 ) .  The 
estimated accuracy i n  obtaining hea t - t ransfer  coef f ic ien ts ,  by t h i s  technique, 
w a s  510 percent.  

The hea t - t ransfer  coe f f i -  

RESULTS AND DISCUSSION 

Flow Visualization 

Shadowgraph p ic tures  which show the shock waves over t he  model a t  angles of 
a t t ack  a r e  presented i n  f igu re  3. In  t h e  v i c i n i t y  of the  s tagnat ion poin t ,  t h e  
shock wave becomes more curved and moves closer  t o  t h e  body with increasing angle 
of a t t ack .  
f i gu re  4 is a predic ted  shock-wave shape between the  sonic poin ts  on the  body as 
obtained from reference 3 f o r  
p a r t i c u l a r  configurat ion) .  
Shapes is  qu i t e  good. 

The measured shock waves are presented i n  f igu re  4. Also shown i n  

a, = 0' t o  25' ( the  range of a p p l i c a b i l i t y  f o r  t h i s  
Agreement between predicted and measured shock-wave 

To determine q u a l i t a t i v e l y  the  type of  flow over the  forebody a t  angle of 
a t t ack ,  t he  s t reamline pa t t e rns  were photographed over a range of angles of 
a t t a c k  as i n  f i g u r e  5 .  The o r ig in  of t h e  streamlines is  bel ieved t o  indicate  t h e  
loca t ion  of t he  s tagnat ion region and t h i s  be l ie f  w i l l  be v e r i f i e d  la ter  i n  the  
r epor t .  Thus t h e  s tagnat ion poin t  moves from the  center  of t he  forebody toward 
the  windward corner with increasing angle of a t tack .  
from misymmetric with increasing angle of a t tack  s ince  the  s tagnat ion poin t  
grows i n t o  a s tagnat ion l i n e  or region resembling two-dimensional flow. 
d i s t r i b u t i o n  tests a t  
flow is  nonsymmetrical. 

The flow appears t o  depart  

Pressure 
cc = 33' a l s o  ind ica te  tha t  i n  t h e  s tagnat ion region the  

This w i l l  be  discussed i n  t h e  following sec t ion .  
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Pressure Distr ibut ion 

The measured and calculated pressure d is t r ibu t ions  over the  forebody w i l l  be 
presented and the associated var ia t ions  i n  stagnation-point locat ion and 
stagnation-point ve loc i ty  gradient w i l l  be described. 

Figure 6 presents the  r a t i o  p/pt, versus S/R on t h e  Apollo forebody f o r  

cp = Oo obtained from Newtonian theory and from the  theory of r e f e r -  -. 
severa l  values o f  cp over a range of angles of a t tack .  Also shown a r e  predic-  
t ions  for  
ence 3. 
pressure d i s t r i b u t i o n  and predic t s  approximately the pressure decrease near the  
forebody corner, which Newtonian theory does not do. 
a t t a c k  up t o  25' the  two theories  bracket the measured pressures f o r  the  nega- 
t i v e  values of S/R and f o r  the  pos i t ive  values of S/R l e s s  than the  respec- 
t i v e  stagnation-point values. Generally, the  theory of reference 3 does b e t t e r  
i n  predicting the behavior of the  pressure i n  the  v i c i n i t y  of the s tagnat ion 
point,  and Newtonian theory does somewhat b e t t e r  i n  predict ing the  pressures f o r  
S/R < 0. a = 33' only the  Newtonian predict ion is  shown and it predic t s  
reasonably wel l  the  pressures f o r  

A t  a = 0' the  theory of reference 3 gives a good estimate of the  

For the  o ther  angles of 

A t  
S/R < 0.3. 

Several in te res t ing  r e s u l t s  a r e  derived from the pressure d i s t r i b u t i o n  data .  
Figure 7 presents the stagnation-point locat ion (S/R),  versus 
from the pressure d is t r ibu t ions  and from the flow v isua l iza t ion  photographs. 
Also shown a r e  the predicted stagnation-point locat ions from the  theory of r e f e r -  
ence 3 and Newtonian theory. The data  and theory of reference 3 a r e  i n  good 
agreement up t o  a = 25O, the  l i m i t  of a p p l i c a b i l i t y  of t h a t  theory, whereas 
Newtonian theory predic t s  a more rapid movement of the stagnation-point locat ion.  

a obtained both 

Figure 8 presents the  stagnation-point veloci ty  gradient  along the cp = Oo 

a = 0' the  veloci ty  gradient  i s  1 .31  times the  Newtonian 
Some addi t iona l  pres -  

a = 330 along a l i n e  passing through the  stagnation 

meridian normalized by the  Newtonian ve loc i ty  gradient a t  
angles of a t tack .  
value and increases t o  3.51 times Newtonian a t  
sure  data were obtained a t  
poin t  i n  a d i rec t ion  90' from the 
t h i s  direct ion (cp '  = 90'). i s  a l s o  shown i n  f igure  8. 
t h i s  nonsymmetry of the ve loc i ty  gradients a t  the s tagnat ion poin t  t h a t  the flow 
i s  nei ther  axisymmetric nor two -dimensional. 

a = 0' f o r  various 
A t  

a = 33'. 

cp = 0' meridian. The ve loc i ty  gradient  i n  
It i s  r e a d i l y  apparent from 

. 
Heat Transfer 

d 

The d i s t r i b u t i o n  of hea t - t ransfer  c o e f f i c i e n t  h/hOJa=,o with pos i t ion  on 
the  forebody, S/R, is presented i n  f igure  9 over a range of angles of a t tack .  
Generally, these data  follow the same trends as the pressure d i s t r i b u t i o n  data, 
bu t  an in te res t ing  difference a t  angle of a t t a c k  is  t h a t  the  maximum heat  t r a n s -  
f e r  does not occur a t  the  s tagnat ion poin t  estimated from pressure measurements 
but  a t  a pos i t ion  nearer the  forebody corner.  
pressure gradients near the  corner. 

This i s  a r e s u l t  of the la rge  

6 



To p r e d i c t  t he  hea t - t ransfer  coeff ic ient  d i s t r ibu t ion ,  t h e  axisymmetric 
theory of Lees ( r e f .  4 )  as modified by reference 5 was  used along t h e  
meridian. 
with Ma>> 1 was 

cp = 0' 
The modified equation taken from reference 5 f o r  an isothermal w a l l  

v 0.5 (e) /= r 

( 2 )  
h -  - 

i .-  Y -1 T I 2  wy+( 1-w) f- 'S 
ho,a=oo 

[J (@ Y /l - ($1 r'ds] jL(&) 
ds s=o,~=oo 

Equation (2 )  is i d e n t i c a l  t o  the  equation f o r  the  cold w a l l  heat ing-rate  d i s t r i -  
bution, provided T r / T t  = 1, w = 1, and y = 7 (an average value behind the  shock 
wave). 
b lun t  bodies ( see  r e f .  4 ) .  h/ho,a=oo can be con- 
s idered equivalent t o  q/qo,a=oo f o r  a cold w a l l .  A t  a = Oo, good agreement is 
obtained between the  calculated values for h/ho,a=oo and the  da ta  i n  f igu re  g(a) .  
The measured and predicted stagnation-point hea t - t ransfer  coe f f i c i en t s  ( ref .  4)  
agreed within 5 percent.  
t i o n  (2)  which i s  f o r  axisymmetric flow with t h e  data f o r  angles of a t t a c k  where 
the  flow i s  no longer axisymmetric. cp = Oo meridian predicted 
by equation ( 2 )  f i t  the  data t rends qu i t e  well  ( f i g .  9) because the  hea t  t r a n s f e r  
over t he  forebody i s  pr imari ly  a funct ion of l o c a l  pressure conditions.  Equa- 
t i o n  ( 2 )  a l so  p red ic t s  t he  heating r a t e s  near t he  corner t o  be higher than t h e  
s tagnat ion-point  value. This increased heat t r a n s f e r  i s  due t o  a th inner  bound- 
a ry  l aye r  r e su l t i ng  from an increase i n  l o c a l  ve loc i ty  gradient .  
K e q ,  Rose, and Detra (ref. 6 )  w a s  a l s o  used t o  estimate t h e  e f f e c t s  of ve loc i ty  
gradient  on equation ( 2 ) .  
w r i t e  t h e  r a t i o  of hea t - t ransfer  coef f ic ien ts  or cold-wall heat ing-rate  r a t i o  as, 

These are reasonable values f o r  high Mach number equilibrium flow over 
Hence, the  da ta  presented as 

It is  in t e re s t ing  t o  compare predict ions using equa- 

Values along the  

The method of 

The cor re la t ion  given i n  reference 6 can be used t o  

h 
ho , a=oO 

where eW' is  a funct ion of t he  l o c a l  ve loc i ty  gradient .  As  noted i n  f igu re  9, 
equation (3)  p r e d i c t s  higher maximum heating r a t e s  than equation ( 2 ) .  
t he  axisymmetric theory appears adequate fo r  rap id  estimates of hea t  t r a n s f e r  
along the  

I n  general ,  

cp = 0' meridian. 

More re f ined  estimates of t he  hea t - t ransfer  d i s t r ibu t ions  should r e s u l t  from 
a general  so lu t ion  t o  t h e  three-dimensional boundary-layer equations. 
t o  inves t iga te  t h e  e f f e c t  of t h i s ,  t he  general  three-dimensional stagnation-point 

I n  order  

7 



theory of Reshotko ( r e f .  7 )  w a s  applied a t  a = 33' f o r  which case the  veloci ty  
gradient along cp' = 90' di rec t ion  w a s  measured ( see  f i g .  8 ) .  Reference 7 sug- 
gests  t h a t  the axisymmetric stagnation-point heat t r a n s f e r  should be modified as 
follows : 

r 1 

The agreement of measured and predicted 
and indicates t h a t  a generalized approach t o  the three-dimensional boundary-layer 
equations is  desirable  f o r  ref ined calculat ions but  i s  beyond t h e  scope of the 
present report .  However, b e t t e r  agreement between the predicted d i s t r i b u t i o n  and 
the data  is obtained when equation ( 3 )  i s  mult ipl ied by the braced term of equa- 
t i o n  ( 4 ) .  
ad jus ted .  

ho,a/ho,a=oO is qui te  good ( f i g .  9 ( e ) )  

This i s  shown i n  f igure  9 ( e )  by the curve labeled equation ( 3 ) ,  

Comparison of Air-Helium Data 

Before comparing helium and a i r  data  it i s  informative t o  study the theories  
p/pt, and h/ho,a=oo used i n  predicting the r a t i o s  of 

dependence upon y .  In order t o  i l l u s t r a t e  the  r e s u l t s  of such a study only the 
data  f o r  
of a t tack .  

with respect  t o  t h e i r  

a = 3 3 O  a r e  t rea ted ,  bu t  the r e s u l t s  are applicable t o  the  other  angles 

The theory of reference 3 predicted the pressure d i s t r i b u t i o n  i n  the 
v i c i n i t y  o f  the stagnation point  f o r  angles of a t t a c k  up t o  25O, and Newtonian 
theory predicted the pressure d i s t r i b u t i o n  f o r  S/R < 0. For Moo >> 1 Newtonian 
theory i s  unaffected by changes i n  y .  For increasing dens i ty  r a t i o  reference 3 
pred ic t s  stagnation-point movement a t  a given angle of a t t a c k  but  r e s u l t s  i n  
almost i d e n t i c a l  pressure d i s t r i b u t i o n s  when compared on the b a s i s  of dis tance 
from the  predicted stagnation poin t .  a = 25' f o r  a p r a c t i c a l  
densi ty  r a t i o  range (4  < p2/p, < 16) ,  which f o r  
1.667 >_ y >_ 1 .2 ,  the predicted stagnation-point movement i s  from (S/R), = 0.74 
f o r  y = 1.2 .  
t i o n  point i s  s m a l l  and the predicted d i s t r i b u t i o n s  a r e  p r a c t i c a l l y  ident ica l ,  . 
the  pressure d i s t r i b u t i o n  should be insens i t ive  t o  changes i n  y .  This conclu- 
s ion can be tes ted  by comparing da ta  obtained i n  a i r  and i n  helium a t  the  same 
angle of a t tack.  * 

For example, a t  
M, >> 1 corresponds t o  

y = 1.667 t o  (S/R), = 0.81 f o r  Since the movement of the  stagna- 

Figure 10  presents the measured gressure r a t i o  (p/pt,) p l o t t e d  against  S/R. 
The data  were a l l  obtained a t  a =: 33 f o r  a range of Mach numbers and y as 
indicated.  The e f f e c t  of y on the  pressure d i s t r i b u t i o n  appears t o  be l e s s  
than the  experimental s c a t t e r .  

Next, the  e f f e c t  of y on equation ( 3 )  w a s  s tud ied  and the  r e s u l t s  a r e  
shown i n  f igure 11 where the d i s t r i b u t i o n  of hea t - t ransfer  c o e f f i c i e n t  (or cold- 
w a l l  heating-rate d i s t r i b u t i o n )  i s  p l o t t e d  aga ins t  S/R. The pressure 
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d i s t r i b u t i o n  from f igure  6 ( e )  w a s  used i n  t h i s  study. Again the e f f e c t  of 7 i s  
small, t h e  g r e a t e s t  difference being found on the corner radius where maximum 
heating occurs. Also, t h e  normalized stagnation-point ve loc i ty  gradient,  as pre  - 
sented i n  f igure  8, can be shown t o  be independent of y when i d e n t i c a l  pressure 
d is t r ibu t ions  a r e  assumed as i n  the above study. It appears t h a t  t h e  heat-  
t r a n s f e r  d i s t r i b u t i o n  on the  Apollo forebody is insens i t ive  t o  y .  Since y i s  
a function of enthalpy, the implication o f  the foregoing i s  t h a t  the cold-wall 
heat ing-rate  d i s t r i b u t i o n  i s  insens i t ive  t o  enthalpy. This implication w a s  a l s o  
noted i n  reference 6 .  Thus the dimensionless d i s t r i b u t i o n  of heating r a t e  i s  
e s s e n t i a l l y  constant, and the  r e l a t i v e  magnitudes of q, can be determined from 

h/ho,a=oo obtained from various sources a t  
indicated. '  
radius where maximum heating occurs. It should be noted t h a t  t h i s  i s  a region 
which presents much experimental d i f f i c u l t y .  The s o l i d  l i n e  represents the p r e -  
d ic t ion  of Kemp, Rose, and Detra f o r  
equation ( 4 )  as previously suggested. 

't'ne stagnation-point heating r a t e .  Figure 12 presents  measured r a t i o s  of 
CY, z 330 f o r  the range of Mach numbers 

As  expected the  heat- t ransfer  data compare wel l  except on the  corner 

y = 1.667 adjusted by the f a c t o r  i n  

CONCLUSIONS 

1. The ex terna l  flow over the Apollo forebody changes from axisymmetric a t  
a. = 0' t o  nonaxisymmetric a t  
coef f ic ien ts  agreed reasonably wel l  with t h e  axisymmetric theory of reference 6 
when measured surface pressures were used. 

a = 33'. However, the  r a t i o  of heat- t ransfer  

2. The movement of the  stagnation point  up t o  a = 25' w a s  adequately 
predicted by t h e  theory of reference 3 and was l e s s  than t h a t  predicted by 
Newtonian theory.  

3. A t  angle of a t t a c k  the maximum heat  t r a n s f e r  w a s  measured on the corner 
radius and not  a t  the stagnation point .  
pressure d i s t r i b u t i o n  predicted t h i s .  

Axisymmetric theory using measured 

4. A study of the  theor ies  f o r  predicting pressure and heat- t ransfer  
d i s t r ibu t ions  indicated t h a t  these quant i t ies  were not sens i t ive  t o  changes i n  y .  
A comparison of a i r  and helium wind-tunnel data tended t o  subs tan t ia te  t h i s  

.e onclus ion. 

Ames Research Center 
National Aeronautics and Space Administration 

Moffett Field,  Cal i f . ,  July 17 , 1963 

'The da ta  a t  M, = 6.1,  7.5, and 9 .1  were obtained from representatives of 
North American Aviation during a meeting a t  Ames Research Center. 
data  were obtained by George Lee i n  the Ames arc  heated v e r t i c a l  10-inch 
hypersonic wind tunnel.  

The I& = 14.3 
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